Light right-handed neutrinos: why not?

R. Barbieri "Neutrinos in Venice" February 7-10, 2006

+ an incursion in cosmology

B, Hall, Oliver, Strumia Amendola, B

The standard answer: the seesaw bans them

(no evidence for them - see below)

Appealing theory or physical reality?

"The typical lifetime of a new trend in high energy physics and cosmology nowadays is about 5 to 10 years. If it survived for a longer time, the chances are that it will be with us for quite a while"

(Linde)

The Standard Model, emended to include neutrino masses

$$\mathcal{L}^{(v-mass)} = L_i \lambda_{ij}^{v} N_j v + N_i M_{ij} N_j$$

$$\mathcal{L}^{(v-mass)} = {\begin{pmatrix} \mathbf{v}^T N^T \end{pmatrix} \begin{pmatrix} 0 \ \lambda v \\ \lambda v M \end{pmatrix} \begin{pmatrix} \mathbf{v} \\ N \end{pmatrix}}$$

with ν , N each 3-vectors and λ , M 3x3 matrices

- 3 alternatives for the light neutrinos:
- 1 3 light Majorana neu's (M large)
- 2 3 light Dirac neu's (M = 0)
- 3 from 4 to 6 mixed states (M small but non-zero)

(every N carrying a factor $\sim (G_N/G_F)^{1/2}$ with all masses otherwise maximal)

An incursion in cosmology: The accelerated expansion of the universe

$$\Lambda \approx (3 \cdot 10^{-3} eV)^4$$
 perhaps anthropically "explained" or

$$\Lambda = 0$$
 (why?) \oplus $\delta \Lambda_{eff}$ perhaps a quintessence

Is there a "calculable" microscopic model of quintessence where

$$\delta \Lambda_{eff} = O(m_{\nu}^4)$$
(e.g. $m_{\phi} \le H_0 \approx 10^{-33} eV$)

Quintessence as a PGB in neutrino flavour physics

$$V = V_0 [\cos(\phi/f) + 1]$$
 $V_0 \approx m_v^4$ $\Rightarrow m_\phi^2 = \frac{V_0}{f^2} \approx H_0^2$

$$\mathcal{L}_Y = N^T \lambda \phi N + h L^T \lambda^D N + V(\phi)$$

with λ , ϕ , λ^D matrices in flavour space: $6 \phi_{ij}$

an approximate
$$U(1)^6 \to \emptyset$$
 $\Rightarrow 6 - 3 = 3 \text{ PGB's}$ an exact
$$U(1)^3 \to \emptyset$$

Calculating the DE potential

the leading term

$$V pprox rac{1}{32\pi^2} Tr \left[MM^\dagger MM^\dagger \ln rac{\Lambda^2}{MM^\dagger} \right]$$

$$<\phi_{ij}>=f_{ij}$$
 $M_{ij}=\lambda_{ij}f_{ij}e^{iG_{ij}/f_{ij}}$

$$V(G) = \mu^4 \cos(G/f)$$
 $\mu^4 = O(M^4)$

Quadratic terms in M irrelevant

More than one PGB: DE and *DM?*

Back to the 6 light neutrinos

- 1. Aren't we seeing only two oscillation frequencies?
- 2. What about the constraints from BBN, CMB, LSS?

An illustrative case (simple enough)

$$\mathcal{L} = \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} m_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} M_{d} N \qquad \text{(in general } N^{T} U^{T} M_{d} U N)$$

$$= \frac{g}{\sqrt{2}} \bar{\mathbf{v}} V \gamma_{\mu} e W_{\mu} + \mathbf{v}^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N + N^{T} M_{d} N \qquad \text{(in general } N^{T} M_{d} N +$$

4 possible spectra

 N_1 ~ unconstrained (warm DM if in the keV region?) Shaposhnikov et al

Signals of light V_R 's

Oscillation exp.s

- $\Rightarrow M_2 \approx 0.3 \ eV$ by reactors: \bar{v}_e disappearance at $\sim 10 \ \text{m}$
- $\Rightarrow M_3 \approx 0.3 \ eV$ by atmospheric and beam experiments
- $\Rightarrow M_3 \approx 10^{-3 \div 2} \ eV$ by long-baseline and atmospheric exp.s
- \Rightarrow very small $M_{1,2,3}$ { MSW effects in the sun and in supernovae vacuum oscillations in neu-telescopes
- \Rightarrow the LSND anomaly?

Cosmology

- $\Rightarrow \Delta N_{\rm v}$ (decoupling) by CMB measurements ($\Delta N_{\rm v} \approx 0.1 \ !?$)
- $\Rightarrow M_{2,3} \approx 0.3 \ eV$ by LSS/CMB measurements ($m_v \approx 0.05 \ eV$!?)

The dichotomy in particle physics

⇒ 1. A coherent grand picture, developed in late 70's / 80's

Unification, supersymmetry

Pros Contras

gauge unification No proton decay

size of neu-masses No susy particles

No flavour effects

YETI

No Higgs

⇒ 2. Anything else (reasonable enough)

It should not be the theorists who decide among 1 and 2