THE **HERON** PROJECT

AN IMPORTANT QUESTION IN SOLAR V PHYSICS:

WHAT IS THE COMPOSITION OF THE LOW ENERGY $(< 1 \text{ MeV}) \lor FLUX?$

LIKELY TO BE AN IMPORTANT PART OF FULL UNDERSTANDING OF SOLAR NEUTRINO PICTURE.

TO ADDRESS THOSE ISSUES HERON PROJECT SEEKS TO ANSWER A RELATED, NECESSARY QUESTION:

CAN ONE MAKE A REAL-TIME, HIGH RATE DETECTOR TO

MEASURE THE TOTAL FLUX AND SPECTRA OF THE P-P & Be?

- HIGH RATE IMPLIES >20 EVENTS /DAY.
- P-P and ⁷ Be MEANS >50 keV DETECTED ENERGY.
- SENSITIVITY TO TOTAL FLUX IMPLIES IMPLIES USING:

$$V_{e,\mu,\tau} + e^- \longrightarrow V_{e,\mu,\tau} + e^-$$

{ A PRECISELY KNOWN CROSS-SECTION & NEEDED COMPLEMENT TO $V_e + N ----> e + N'$ of GALLEX, SAGE, LENS(?) }

•SPECTRA IMPLIES GOOD ENERGY RESOLUTION.

GOOD NEWS:

DETECTOR NEED NOT BE VERY MASSIVE:

- * Φ_{P-P} IS BY FAR HIGHEST FLUX (6 x 10¹⁰ cm⁻² sec⁻¹)
- * RELATIVELY LARGE CROSS-SECTION

 $(\sim 15 \text{ P-P } \& 7^{-7} \text{ Be /day } \text{SSM})$

BAD NEWS:

AT THESE ENERGIES BACKGROUNDS IN TARGET
MATERIALS CAN BE ORDERS OF MAGNITUDE >> SIGNAL:

- * COSMOGENIC RADIOACTIVITY
- * HEAVY ELEMENT SERIES U & Th (in or out of equilibrium)
- * LIGHTER ISOTOPES (3H, 40K, 14C)

HOWEVER, ⁴He IN SUPERFLUID STATE HAS SOME IMPORTANT & ATTRACTIVE FEATURES AS A CANDIDATE FOR DETECTOR MATERIAL

* DENSITY AT < 2.1 K = 0.145 gm/cc.

(10 TONNES IS A ~4 METER-CUBE)

- * IT IS SELF-CLEANING (ALL OTHER ATOMIC SPECIES. FREEZE-OUT TO WALLS OR FALL TO BOTTOM ---- kT ~ 10⁻²⁵ Joules)
- * NO LONG-LIVED He ISOTOPES.
- * HELIUM IS INEXPENSIVE (\$4 / liter)
- * STANDARD INDUSTRIAL TECHNIQUES FOR HANDLING.

SUPERFLUID HELIUM CAN BE A COMPACT & RADIOACTIVITY FREE TARGET MATERIAL

TO BE PRACTICAL NEED:

- A) TO HAVE A WAY TO EXTRACT THE SIGNAL.
- B) TO CONTAIN THE CRYOGENIC LIQUID IN A VESSEL.
- C) TO DISCRIMINATE AGAINST BACKGROUNDS CREATED BY CONTAINMENT VESSEL.

IN HERON PROJECT:

For (A): WE HAVE DEVELOPED A NEW METHOD OF PARTICLE DETECTION BASED IN BULK SUPERFLUID HELIUM.

For (B & C): HAVE MADE PRELIMINARY STUDIES TESTING SCALE OF PROBLEM & CONDITIONS FOR SOLUTIONS.

PARTICLE DETECTION IN SUPERFLUID HELIUM

•WHAT IS NATURE OF SOLAR V EVENTS ARE LOOKING FOR?

•WHAT HAPPENS WHEN A PARTICLE DEPOSITS ITS ENERGY BY STOPPING IN SUPERFLUID HELIUM?

GENERAL:

INITIAL IONIZATION LOSS:

300 keV electron loses 30 keV/mm

3 MeV alpha loses 3x10⁴ keV/mm

** CASCADE OF PROCESSES: Energy

appears finally as phonon/rotons + UV photons + excited isomers)

PARTICULAR:

- ** IMPORTANT DIFFERENCES FROM ENERGY LOSS IN OTHER LIQUID, NOBLE GASES.
- ** LITTLE KNOWN PRIOR TO OUR EXPERIMENTS.
- ** FIND: MINIMUM IONIZING PARTICLE (e) & DENSELY IONIZING (α) PRODUCE STRONGLY DIFFERING DIVISION AMONG FINAL CHANNELS.

% UV PHOTONS:

(Electrons): (Alpha) = 3:1

% PHONON/ROTONS: (Electrons): (Alpha) = 1:4

BOTH UV PHOTONS & PHONON SIGNAL DETECTABLE ON SAME CALORIMETERIC DEVICE.

BROWN UNIV. EXPERIMENTS ON PARTICLE DETECTION

(Adams, Bandler, Enss, Huang, Kim, Lanou, Maris, More, Porter, Seidel)

- ** DILUTION FRIDGE (30 -- 50 mK).
- ** 3 LITER TEST CELL OF SUPERFLUID HELIUM-4.
- ** MOVABLE/ROTATABLE RADIOACTIVE SOURCES IN LIQUID
- * 113Sn (364 keV e's); 241Am (3 5 MeV Cl's); 55Fe/113In calib. Xrays
 - ** CALORIMETRIC DETECTION OF UV PHOTONS & PHONON/ROTONS.

• CALORIMETRIC DETECTION METHOD:

- ** THIN (~3 gm) SAPPHIRE or SILICON WAFERS (High Θ_{DEBYE})
- ** Ir-Au SUPERCOND. Thin Film THERMOMETER w/ SQUID MEASURE ΔT FROM ΔE DEPOSIT.

PHONON/ROTONS:

- * Velocity ~200 m/s
- * E and P conservation ----> Θ critical
- * 1/3 Evaporate if E> E_{EVAP}
- * Adsorption binding x 10 gain
- * Measure pulse ht. & $\tau_{RISE/RELAX}$

PHOTONS:

- * UV AT ~ 16 eV (EXCITED STATES OF He2 DIMER.
- * He TRANSPARENT @ 16 eV (1st atomic level 20eV)
- * WAFERS HIGHLY ABSORB AT FULL ENERGY (Photo-electron)
- * DISTINGUISH SIGNALS: PROMPT PHOTONS versus DELAYED PHONON/ROTONS.

CELL CONFIGURATION FOR AN ELECTRON EXPERIMENT

SYNOPSIS OF ALPHA PARTICLE DETECTION:

DILUTION REFRIGERATOR & ATTACHMENTS

FINAL ENERGY BUDGET:

Electrons: 25% (15 photons/keV) and 10% (105 phonons/keV)

Alphas: 8% photons and 40% phonons/rotons

FINAL FRACTION OF DEPOSITED ENERGY

Electron

Alpha

Photons:

25 %

8 %

Phonon/Rotons: 10 %

40 %

 $(E > E_{evaporate})$

FRACTION OF ENERGY DETECTED IN LARGE DETECTOR

(effect of solid angle and critical angle)

Electron

Alpha

Photons:

1.7 % -- 4.3 %

0.5 % -- 1.4 %

Phonons/Rotons

3.3 %

3 %

 $(E > E_{evaporate})$

5 -- 7.5%

TOTALS

3.5 -- 5.4%

 $\theta_{critical}$

 $\sim 30^{0}$

 ~ 170

FOR SOLAR V RECOIL DETECTION USE BOTH PHOTONS & PHONON/ROTONS:

- PHOTONS PROVIDE A PROMPT TRIGGER (say, > 20 wafers).
- 16 eV PHOTONS <u>UN-ATTENUATED</u> IN HELIUM.
- AIM FOR <u>SINGLE PHOTON</u> SENSITIVITY.
- MEASURE DELAYS FOR PHONON/ROTON SIGNAL (200 m/s) (SIMPLIFIES ENERGY SUM & BCKGND REJECTION).

MEASUREMENT OF EVENT POSITION & ENERGY IN "HERON"

EXAMPLE: 100 keV in middle

- * 250 PROMPT PHOTONS detected ON "A" & "B" (~4 keV)
- * 4 x 10 5 EVAPORATED ATOMS detected on "A" & "B" (~3.5keV)
- POSITION: * USE PHOTONS IN METHOD SIMILAR TO X-RAY ASTRONOMY & TOMOGRAPHY ---- BUT WITH BOTH PLANES ACTIVE DETECTORS.
 - * WAFER PLANE "A": 90% COVERAGE IN 25x25 UNIFORM GRID. WAFER PLANE "B"; 50% COVERAGE IN 25x25 PATTERNED GRID.
 - * EXPECTED HIT PATTERN (mean # hits/wafer & variances) FOR ANY EVENT POSITION CAN BE CALCULATED & PRECISELY TESTED IN ADVANCE & IN-SITU (with 55 Fe x-ray source).
 - * FROM OBSERVED PATTERN ON ALL WAFERS ---MAX. LIKRLIHOOD FOR BEST X,Y,Z (NEED 10 cm. ACCURACY).
- ENERGY: * EXPECTED TIME DELAY OF EVAP. SIGNAL TO EACH WAFER KNOWN FROM \mathbf{t}_{o} , POSITION AND KNOWN ROTON SPEED. * GROUP WAFERS & FORM COMBINED SUMS OF BOTH PHOTONS AND EVAP. SIGNAL FROM BOTH PLANES "A" & "B".

QUESTION OF SINGLE, 16 eV PHOTON SENSITIVITY

- •GOAL: 10 eV THRESHOLD with $\tau_{rise} \sim 1$ ms & $\tau_{relax} \sim 20$ ms ON A 20 CM (hexagonal) WAFER.
- •OUR TEST CELL STUDIES ON Ω 's and e HAD E_{THRESH}=300 eV (~ 20 photons) ON 5 cm WAFER (superconducting thin films).
- •MUCH MORE PROMISING: FAST, MAGNETIC μ -CALORIM.
 BEING DEVELOPED @ BROWN (Seidel) & HEIDELBERG(Enss)
 - ** MATERIAL w/ T DEPENDENT MAGNETIZATION. (e,g., dilute system of atomic spins in a metal --- Er-Au)
 - ** MEASURE CHANGES IN MAGNETIZATION.
 (a direct measure of change in eqilibrium energy)
 - ** D.C. SQUID --- THE ULTIMATE SESITIVITY TO ΔM .

 $\Delta E = K(geom.) H (C_{TOTAL}/C_{SPINS}) \Delta \Phi_{SQUID NOISE}$

** ATTACH & COUPLE TO A WAFER:

 $C_{TOTAL} = C_{WAFER} + C_{SPINS} + C_{ELECTRONS}$ (Optimum: $C_{WAFER} = C_{SPINS} = C_{ELECTRONS}$)

Er - Au μ -Calorim.

Silicon Wafer

Gold pad & SQUID Chip

>> WELL CHARACTERIZED THERMODYN.
SYSTEM & CAN BE CALCULATED ACCURATELY.

>> FIRST EXPERIMENTAL RESULTS ON SMALLER SYSTEMS ENCOURAGING ----- 20% AGREEMENT w/ THEORY.

PRELIMINARY RESULTS ON MAGNETIC CALORIM.

At Brown:

• Er-Au (1000 ppm)
Diam: 0.95 mm, Ht. 0.6 mm

• 50 mK and 6 Gauss on SQUID chip.

Coupled to heat capacity of 3x10⁻¹² J/K

At Heidelberg:

Achieved 120 eV FWHM on a heat capacity 2x10-9 J/K ---- same as 20 cm Si wafer in our HERON application.

Need another factor x10

Factors to be worked on:

- * SQUID chip re-wire.
- $*6G \longrightarrow 50G$
- * Better coupling geometry.
- * 50mK → 30mK.
- * SQUID noise & filtering.

BACKGROUND CONSIDERATIONS

•SIGNAL: $V + e \longrightarrow V + e$; SINGLE e < 2 cm

•BACKGROUND: $\gamma + e \longrightarrow \gamma + e$; COMPTONS with γ 's from:

From HELIUM: NONE; SELF CLEANING.

From WAFERS: 24 kg; 1.28 MeV γ from ²²Na (0.3 ct/kg/d) (< 1 count/day in Helium)

From COPPER CRYOSTAT:

** COSMOGENICS (54 Mn, 57 Co, 60 Co); 47 microBq/kg (2 months above gnd; 2 years below gnd)

** U & Th: AIM FOR ~ 1/10 of COSMOGENICS.

Requires < 3x10⁻¹³ gm/gm in Cu.

Our ID-Mass Spec. measure: ²³⁸ U < 1x10⁻¹² gm/gm in electr_form Cu,

BACKGROUND Monte Carlo STUDIES with GENERIC HERON

- HERMETIC CONTAINMENT by ~ 4 METERS of LIQUID HELIUM CAUSES MULTIPLE COMPTON SCATTERS OF GAMMA.
- ENHANCE THIS SIGNATURE DIFFERENCE BY LINING CRYOSTAT with 25 cm CELLS OF "MODERATOR" (CO₂ or frozen non-polar liquid) ------ DEGRADES THE PHOTON ENERGIES. NEEDS < 10⁻¹⁴ gm/gm.

RESULTING ENERGY DEPOSITION:

SIGNAL

- * SINGLE e < 2 cm.
- * $E_e(p-p) < 230 \text{ keV}$.
- * $E_e(^7Be) < 660 \text{ keV}.$
- * UNIFORM SPATIALLY.

BACKGROUND

* MULTIPLE e 's OVER LARGE LENGTH

< N > = 10; Length ~ 60 cm.

- * E_e STRONGLY PEAKED below100 keV.
- * STRONG SPATIAL DEPTH DEPENDENCE.

•GENERATE EQUIVALENT OF 6 MONTHS RUN (@ 70% duty factor)

CUTS CRITERIA:

- ** +/- 5 cm. SPATIAL RESOLUTION.
- ** DIVIDE EVENTS INTO FID. & NON-FID. VOLUMES.
- ** ONE LOCALIZED ENERGY DEPOSITION.
- ** E_{TOT} < 800 keV.

RESULTS IN A SIGNAL/BCKGND of 1:1 (with stated activity)
BEFORE NORMALIZATION & SUBTRACTION (Fid. - Non-fid.)

Background subtracted data (6 mo.)

Generic HERON (not to scale)

SUMMARY STATUS & FUTURE

SUMMARY PRESENT STATUS:

- ** PHYSICS OF NEW, PARTICLE DETECTION SCHEME IN SUPERFLUID WELL UNDERSTOOD & TESTED.
- ** SIGNIFICANT ADVANCES MADE IN WAFER SENSITIVITY.
- ** PRELIMINARY STUDIES OF BACKGROUNDS & REJECTION.

WHAT OF THE FUTURE?

IMMEDIATE GOALS:

INTENSIVE WORK ON NEW, MAGNETIC CALORIMETERS TO REACH SINGLE PHOTON SENSITIVITY.

MULTI-WAFER, 3-liter TEST CELL ENERGY RESOLUTION TESTS & SIGNAL COMBINING ELECTRONICS.

BEYOND THE IMMEDIATE:

- ** ASSUMING SUCCESS, NOW TIME TO INITIATE & EXTEND WORK ON ALL ASPECTS ---> CRYOGENIC ENGINEERING, BACKGND/MATERIALS, TRIGGER ELECTRONICS, DATA ACQU., SIMULATION STUDIES, SITE IMPACT / REQUIREMENTS. +++++.
- ** WE ARE A VERY SMALL GROUP & WELCOME SOLID, CRITICAL (EVEN SKEPTICAL!) STUDY EFFORT FROM OTHERS ON ABOVE.
- ** AND TO MAKE A HERON DETECTOR A CONTIBUTOR TO:
- "WHAT IS FULL NATURE OF THE LOW E SOLAR NEUTRINO FLUX?"