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ABSTRACT

The energy range of cosmic ray experiments covers not only the energy of the
Large Hadron Collider (LHC), but extends beyond it. Extracting proton–proton
cross sections from cosmic ray observations is far from straightforward. Cosmic
ray experiments map the atmospheric depth at which cosmic ray initiated show-
ers develop, by measuring the shower attenuation length (Λm), which is not only
sensitive to the interaction length of the protons in the atmosphere (λp−air), with
Λm = kλp−air = k

14.5mp

σinel
p−air

, but also depends critically on the proton inelasticity

and the properties of the pion interactions, which determines the rate at which
the energy of the primary proton is dissipated into electromagnetic shower en-
ergy observed in the experiment. This is taken into account by the parameter
k. The departure of k from unity depends on the inclusive particle produc-
tion cross section in nucleon and meson interactions on the light nuclear target
of the atmosphere and its energy dependence. We simultaneously fit a QCD-
inspired parameterization of all accelerator data on forward proton-proton and
antiproton-proton scattering amplitudes, together with cosmic ray data (using
Glauber theory), to predict proton–air and proton-proton cross sections at ener-
gies near

√
s ≈ 30 TeV. We also show that, using the additive quark model, along

with vector dominance, that we successfully predict γp and γγ cross sections.
We find that the p-air cosmic ray measurements strongly constrain the inclu-
sive particle production cross section, as well as reducing the errors on the fit
parameters—in turn, markedly reducing the errors in the high energy proton-
proton and proton-air cross section predictions. An accurate measurement of
σtot at the LHC would, in turn, again greatly reduce the errors for cosmic ray
predictions. A high energy parameterization of σinel

p−air , useful for calculating
neutrino fluxes, is given. We also give predictions for the LHC.

1. Introduction

This communication is divided into 3 parts

• Part 1: fitting total cross sections, ρ values (ρ is the ratio of the real to the

imaginary portion of the forward scattering amplitude) and B, the nuclear slope
parameter (B(s) = d

dt
[ln dσ

dt
(s, t)]t=0) to accelerator data—pp and p̄p—using a

QCD-inspired eikonal model.

• Part 2: predicting γp and γγ cross sections from the nucleon-nucleon fit, using
a naive quark model and vector dominance, using the eikonal model.



• Part 3: making a global fit using both cosmic ray and accelerator data simulta-

neously, to predict σinel
p−air and σpp at ultra-high (Elab > 1018 ev) energies.

2. Fitting Accelerator Data using a QCD-Inspired Eikonal Model

We use an eikonal model to make calculations of cross sections, nucleon slope
parameters B and ρ values in p̄p and pp collisions, work done by Block, Gregores,
Halzen and Pancheri1).

We define our (complex) eikonal χ(b, s) so that a(b, s), the (complex) scattering
amplitude in impact parameter space b, is given by

a(b, s) =
i

2

(
1 − eiχ(b,s)

)
=

i

2

(
1 − e−χI(b,s)+iχR(b,s)

)
. (1)

Using the optical theorem, the total cross section σtot(s) is given by

σtot(s) = 2
∫ [

1 − e−χI(b,s) cos(χ
R
(b, s))

]
d2~b, (2)

the elastic scattering cross section σel(s) is given by

σelastic(s) =
∫ ∣∣∣1 − e−χI(b,s)+iχR(b,s)

∣∣∣2 d2~b. (3)

The ratio of the real to the imaginary portion of the forward nuclear scattering am-
plitude, ρ, is given by

ρ(s) =
Re

{
i(
∫

1 − e−χI(b,s)+iχR (b,s)) d2~b
}

Im
{
i(
∫
(1 − e−χ

I
(b,s)+iχ

R
(b,s)) d2~b

} (4)

and the nuclear slope parameter B is given by

B =
1

2

∫ (
1 − e−χI(b,s)+iχR(b,s)

)
b2 d2~b∫ (

1 − e−χ
I
(b,s)+iχ

R
(b,s)

)
d2~b

. (5)

Block et al.1) have used an even QCD-Inspired eikonal χeven given by the sum

of three contributions, glue-glue, quark-glue and quark-quark, which are individually
factorizable into a product of a cross section σ(s) times an impact parameter space
distribution function W (b ; µ), i.e.,:

χeven(s, b) = χgg(s, b) + χqg(s, b) + χqq(s, b)

= i [σgg(s)W (b ; µgg) + σqg(s)W (b ; µqg) + σqq(s)W (b ; µqq)] , (6)

where we have set µqg =
√

µqqµgg and where the impact parameter space distribution
function

W (b ; µ) =
µ2

96π
(µb)3K3(µb) (7)



is normalized so that
∫

W (b ; µ)d2~b = 1. Hence, the σ’s in eq. (6) have the dimensions

of a cross section. The factor i is inserted in eq. (6) since the high energy eikonal is
largely imaginary (the ρ value for nucleon-nucleon scattering is rather small). The
total even contribution is not yet analytic. For large s, the even amplitude in eq. (6)
is made analytic by the substitution s → se−iπ/2 (see the table on p. 580 of reference
2), along with reference 3)). The quark contribution χqq(s, b) accounts for the constant
cross section and a Regge descending component (∝ 1/

√
s), whereas the mixed quark-

gluon term χqg(s, b) simulates diffraction (∝ log s). The glue-glue term χgg(s, b),

which eventually rises as a power law sε, accounts for the rising cross section and
dominates at the highest energies. In eq. (6), the inverse sizes (in impact parameter
space) µqq and µgg are to be fit by experiment, whereas the quark-gluon inverse size
is taken as µqg =

√
µqqµgg.

The high energy analytic odd amplitude (for its structure in s, see eq. (5.5b) of
reference 2), with α = 0.5) that fits the data is given by

χodd
I

(b, s) = −σodd W (b; µodd), (8)

with σodd ∝ 1/
√

s, and with W (b, µodd) =
µ2

odd

96π
(µoddb)

3 K3(µoddb) normalized so that∫
W (b ; µodd)d

2~b = 1.
Finally,

χp̄p
pp = χeven ± χodd. (9)

The eikonal of eq. (6) is a QCD-inspired parameterization of the forward proton–
proton and proton–antiproton scattering amplitudes which is analytic, unitary, sat-
isfies crossing symmetry, the Froissart Bound (asymptotically approaching a black
disk) and, using a χ2 procedure, fits all accelerator data of σtot (including the new

E-811 Tevatron cross section4)), nuclear slope parameter B and ρ, the ratio of the
real-to-imaginary part of the forward scattering amplitude for both pp and p̄p colli-
sions (for details, see reference 1)). We fit all the highest energy cross section data
(E7105), CDF 6) and the new E-811 Tevatron value4)), which anchor the upper end of

our cross section curves. The results of the fit are shown in Fig. 1. Data for ρ values
and B are confronted with our model in Figs. 2 and 3.

It can be seen from those figures that we obtain a satisfactory description of all 3
quantities, for both p̄p and pp scattering. The χ2 of the fit is reasonably good (consid-

ering the large spread in some of the experimental data, as well as the discrepancies in
the highest energy cross sections), giving a χ2/d.f. = 1.66, for 75 degrees of freedom.
The model splits the difference between the measurements of the total cross section
at

√
s = 1800 GeV (see Fig. 1). From Fig. 2, we note that the fit to ρ is anchored

at
√

s = 550 GeV by the very accurate measurement7) of UA4/2 and passes through
the E710 point8).

In Fig. 4 we show our prediction for the elastic cross section along with the data

for both p̄p and pp. The agreement is excellent. We note that σelastic is rising more
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Figure 1: The total cross section for pp and p̄p scattering. The solid line and squares are for pp and
the dotted line and circles are for p̄p.
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Figure 2: The ratio of the real to imaginary part of the forward scattering amplitude for pp and p̄p
scattering. The solid line and squares are for pp and the dotted line and circles are for p̄p.
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Figure 3: The nuclear slope parameter for elastic pp and pp̄ scattering. The solid line and squares
are for pp and the dotted line and circles are for p̄p.
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Figure 4: Elastic scattering cross sections for pp and pp̄ scattering. The solid line and squares are
for pp and the dotted line and circles are for p̄p.

sharply with energy than the total cross section σtot. Comparing Fig. 1 with Fig. 4,

we see that the ratio of the elastic to total cross section is rising with energy. The
ratio is, of course, bounded by the value for the black disk2,9), i.e., 0.5, as the energy
goes to infinity.

Having fixed all parameters specifying our eikonal, we can now predict dσ/dt,
for various values of

√
s. The differential cross section at the Tevatron (

√
s = 1800

GeV) is shown in Fig. 5 along with E71010) data. The agreement over 4 decades is

dσ
/d

t, 
in

 m
b/
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Figure 5: The elastic differential scattering cross section for the reaction p̄p → p̄p at
√

s = 1800
GeV. The data points are from E710.

striking. The differential cross section for
√

s = 14 TeV, the energy of the LHC, is

plotted in Fig. 6. In particular, at small |t|, we predict that the curvature parameter
C (see reference 1) for details) is negative. For energies much lower than 1800 GeV,
the observed curvature has been measured as positive. For 1800 GeV, we see from
Fig. 5 that the curvature parameter C is compatible with being zero. Block and

Cahn2,9) have pointed out that the curvature is predicted to go through zero near the
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Figure 6: The elastic differential scattering cross section for the reaction p̄p → p̄p at LHC.

Tevatron energy and that it should become negative thereafter. Asymptotically the
proton approaches a black disk. Its curvature is always negative2,9), C = −R4/192,
where R is the radius of the disk. Thus, the curvature has to pass through zero as

the energy increases. ‘Asymptopia’ is the energy region (energies much larger than
the Tevatron) where the scattering approaches that of a sharp disk.

3. γp and γγ Interactions

3.1. γp Reactions

We assume that the photon behaves like a two quark system when it interacts
strongly1). The γp scattering amplitudes are then obtained by performing the substi-

tutions σij → 2
3
σij and µi →

√
3
2
µi in the even eikonal for nucleon–nucleon scattering,

so that

χγp(s, b) = i
[

2
3
σqq(s)W

(
b;
√

3
2
µqq

)
+ 2

3
σqg(s)W

(
b;
√

3
2
µqqµgg

)
+ 2

3
σgg(s)W

(
b;
√

3
2
µgg

)]
.

(10)
Using vector dominance, the photon-proton total cross section is then written as

σγp
tot(s) = 2Phad

∫ {
1 − e−χ

γp
I (b,s) cos[χγp

R (b, s)]
}

d2~b , (11)

where Phad is the probability that a photon interacts as a hadron. We use the value

Phad = 1/240. This value is found by normalizing the total γp cross section to the low
energy data, and is very close to that derived from vector dominance, 1/249. Using
f2

ρ /4π = 2.2, f2
ω/4π = 23.6 and f2

φ/4π = 18.4, we find ΣV (4πα/f2
V ) = 1/249, where

V = ρ, ω, φ (see Table XXXV, pag. 393 of Ref. 11)). With all eikonal parameters fixed

by the nucleon-nucleon data, we can now calculate σγp
tot(s). The result is shown in
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Figure 7: The total cross section for γp scattering.

Fig. 7. It reproduces the rising cross section for γp, using the parameters fixed by
nucleon-nucleon scattering. The accuracy of our predictions are ∼ 1.5%, from the
statistical uncertainty in our eikonal parameters.

We next consider the ‘elastic’ scatterings

γ + p → ρvirtual + p → ρ + p ,

γ + p → ωvirtual + p → ω + p ,

γ + p → φvirtual + p → φ + p . (12)

Here the photon virtually transforms into a vector meson which elastically scatters

off of the proton. The strengths of these reactions is O(α) times a strong interaction
cross section. The true elastic cross section is given by Compton scattering on the
proton, γ + p → γ + p, which we can visualize as

γ + p → ρvirtual + p → ρ + p → γ + p ,

γ + p → ωvirtual + p → ω + p → γ + p ,

γ + p → φvirtual + p → φ + p → γ + p . (13)

It is clearly O(α2) times a strong interaction cross section, and hence is much smaller
than ‘elastic’ scattering of eq. (12). Thus, we justify the use of eq. (11) to calculate the
total cross section, since only reactions with a photon in the final state are neglected.

We evaluate ρ and the slope B for the ‘elastic’ scattering expressed in eq. (12)
using eq. (4) and (5). It can be seen from those equations that our predictions are
free of Phad factors and are independent of normalization, it being the same for either

ρp, ωp or φp final states.
The dependence of ρ with the energy is shown in Fig. 8. Damashek and Gilman12)

have calculated the ρ value for Compton scattering on the proton using dispersion
relations, i.e., the true elastic scattering reaction for photon-proton scattering. We

compare this calculation, the dotted line in Fig. 8, with our prediction of ρ (the solid
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Figure 8: Ratio of the real to imaginary part of the forward scattering amplitude for the ‘elastic’
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line). The agreement is so close that we had to move the two curves apart so that

they may be viewed more clearly.
In Fig. 9 we show our results for the slope B as a function of the energy. The
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Figure 9: Nuclear slope parameter for the ‘elastic’ reaction γ + p → Vi + p, where Vi is ρ0, ω0 or
φ. For the reaction γ + p → ρ0 + p, the inverted triangles are the Zeus data, the circles are the H1
data, and the triangles are the low energy data. For the reaction γ + p → ω0 + p, the squares are
the Zeus data.

available experimental data for ‘elastic’ ρp and ωp final states are also plotted. Again,
the agreement of theory and experiment is very good.

We note that the results for ρ and B are very critical to our analysis. We have
assumed that, in some manner, the gluons are related to the quarks. For a two
quark system, such as the photon, the factors of 2/3 multiplying a cross section and√

3/2 multiplying µ are the same for gluon-gluon as for quark-quark. If we relax
this assumption and only use these factors in the quark, we get a sharp disagreement

with our predicted ρ value, being considerably larger than the Compton value. The



problem is further exacerbated in the predictions for B, with slopes from 11 GeV−2

(at 5 GeV) to 16 GeV−2 (at 80 GeV), which are much larger than the experimental
values. This clearly has implications for constituent dynamics, which we will discuss
further on.

To calculate the elastic cross sections σV p
elastic and differential cross sections dσV p/dt

as a function of energy, we use

σV p
elastic(s) = P V p

had

∫ ∣∣∣1 − eiχγp(b,s)
∣∣∣2 d2~b, (14)

where P V p
had is the appropriate probability for a photon to turn into V , with V = ρ, ω

or φ. The differential scattering cross section is given by

dσV p

dt
(s, t) =

P V p
had

4π

∣∣∣∣
∫

J0(qb)(1 − eiχγp(b,s)) d2~b
∣∣∣∣2 , (15)

where t = −q2.
The differential cross section, dσ/dt, for the ‘elastic’ reactions γ + p → ρ0 + p,

γ + p → ω0 + p and γ + p → φ0 + p are plotted in Figs. 10, 11, and 12, respectively.
The agreement, in absolute normalization and shape, of our results for all three
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Figure 10: The differential cross section for the ‘elastic’ reaction γ + p → ρ0 + p. The solid curve
and the circles (Ballam et al. data) are at

√
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√

s= 73 GeV (Zeus data).

light vector mesons with the experimental data for all available energies reinforces
our confidence in the model.

3.2. γγ Total Cross Section

We now consider γγ interactions. As it was done for γp interactions, we will start

from the eikonal χγp(s, b) and multiply every cross section by 2/3 and multiply each
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µ by
√

3/2. Therefore,

χγγ(s, b) = i
[

4
9
σqq(s)W

(
b; 3

2
µqq

)
+ 4

9
σqg(s)W

(
b; 3

2

√
µqqµgg

)
+ 4

9
σgg(s)W

(
b; 3

2
µgg

)]
.

(16)
Using vector dominance we obtain,

σγγ
tot(s) = 2P 2

had

∫ {
1 − e−χγγ

I (b,s) cos[χγp
R (b, s)]

}
d2~b, (17)

where Phad = 1/240 is the probability that a photon will interact as a hadron. In
Fig. 13 we plot our results for σγγ

tot(s) as a function of the energy, and compare it to
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Figure 13: The total cross section for γγ scattering. The data sources are indicated in the legend.

the various sets of experimental data. We note that it gives good agreement with the
data set for Lep2-L3.

We have used the factorization theorem, σnn/σγp = σγp/σγγ, in the various eikonals

for nn, γp and γγ, in our model. Interestingly, Block and Kaidalov13) have shown that
this theorem holds exactly, even after eikonalization, when an additive quark model
and vector dominance is assumed, with the proportionality constant 2/(3P γ

had). This

result is numerically born out in Figures 1, 7 and 13.

4. A Global Fit Simultaneously using Cosmic Ray and Accelerator Data

In this section, we will discuss the results of a global fit, simultaneously using
cosmic ray and accelerator data, work done by Block, Halzen and Stanev14).

4.1. Cosmic Ray Analysis

Cosmic ray experiments measure the penetration in the atmosphere of particles
with energies in excess of those accelerated by existing machines—interestingly, their

energy range covers the energy of the Large Hadron Collider (LHC) and extends



beyond it. However, extracting proton–proton cross sections from cosmic ray obser-

vations is far from straightforward15). By a variety of experimental techniques, cosmic
ray experiments map the atmospheric depth at which cosmic ray initiated showers
develop. The measured quantity is the shower attenuation length (Λm), which is not
only sensitive to the interaction length of the protons in the atmosphere (λp−air), with

Λm = kλp−air = k
14.5mp

σinel
p−air

, (18)

but also depends on the rate at which the energy of the primary proton is dissipated
into electromagnetic shower energy observed in the experiment. The latter effect is
parameterized in Eq. (18) by the parameter k; mp is the proton mass and σinel

p−air the

inelastic proton-air cross section. The value of k depends on the inclusive particle
production cross section in nucleon and meson interactions on the light nuclear target
of the atmosphere and its energy dependence.

The extraction of the pp cross section from the cosmic ray data is a two step

process. First, one calculates the p-air total cross section from the inelastic cross
section inferred in Eq. (18), where

σinel
p−air = σp−air − σel

p−air − σq−el
p−air . (19)

Next, the Glauber method16) is used to transform the value of σinel
p−air into a proton–

proton total cross section σpp; all the necessary steps are calculable in the theory.
In Eq. (19) the cross section for particle production is supplemented with σel

p−air and

σq−el
p−air, the elastic and quasi-elastic cross section, respectively, as calculated by the

Glauber theory, to obtain the total cross section σp−air. The subsequent relation
between σinel

p−air and σpp involves the slope of the forward scattering amplitude for

elastic pp scattering,
dσel

pp

dt
,

B =

[
d

dt

(
ln

dσel
pp

dt

)]
t=0

, (20)

and is shown in Fig. 14, which plots B against σpp, for 5 curves of different values
of σinel

p−air. This summarizes the reduction procedure from the measured quantity Λm

(of Eq. 18) to σpp
15). Also plotted in Fig. 14 is a curve of B vs. σpp which will be

discussed later.
A significant drawback of the method is that one needs a model of proton–air

interactions to complete the loop between the measured attenuation length Λm and
the cross section σinel

p−air, i.e., the value of k in Eq. (18). Our method of analysis

minimizes the impact of theory, by not requiring models.

4.2. Global Analysis

We have constructed a QCD-inspired parameterization of the forward proton–

proton and proton–antiproton scattering amplitudes17) which is analytic, unitary and
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essentially model-free. It fits all accelerator data of σtot, B and ρ, the ratio of the real-
to-imaginary part of the forward scattering amplitude; see Fig. 15. In addition, the
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Figure 15: The simultaneous QCD-inspired fit of total cross section σpp, ρ and B vs.
√

s, in GeV,
for pp (squares) and p̄p (circles) accelerator data: (a) σpp, in mb, (b) ρ, (c) Nuclear slope B, in
GeV−2

high energy cosmic ray data are also simultaneously used, i.e., k from Eq.(18) is also
a fitted quantity—we refer to this fit as a global fit14). We emphasize that in the global
fit, all 4 quantities, σtot, B, ρ and k, are simultaneously fitted. Using vector meson

dominance and the additive quark models, our QCD fit accommodates a wealth of
data on photon-proton and photon-photon interactions without the introduction of
new parameters, as shown earlier. Because the model is both unitary and analytic, it
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Figure 16: A plot of the predicted total pp cross section σpp, in mb vs. the measured p-air cross
section, σinel

p−air, in mb.

has high energy predictions that are essentially theory–independent. In particular, it

also simultaneously fits σpp and B, forcing a relationship between the two. Specifically,
the B vs. σpp prediction of the model is shown as the dashed curve in Fig. 14. The dot
corresponds to our prediction of σpp and B at

√
s = 30 TeV. It is seen to be slightly

below the curve for 490 mb, the lower limit of the Fly’s Eye measurement, which was

made at
√

s ≈ 30 TeV. The percentage error in the prediction of σpp at
√

s = 30 TeV
is ≈ 1.2%, due to the statistical error in the fitting parameters (see references 17),1)).

In Fig. 16, we have plotted the values of σpp vs. σinel
p−air that are deduced from the

intersections of the B-σpp curve with the σinel
p−air curves of Fig. 14. Figure 16 allows the

conversion of the measured σinel
p−air to σpp . The percentage error in σinel

p−air is ≈ 0.8 %
near σinel

p−air = 450mb, due to the error in σpp from the model parameter uncertainties.
Our prediction for the total cross section σpp as a function of energy is confronted

with all of the accelerator and cosmic ray measurements18,19,20) in Fig. 17. For inclu-
sion in Fig. 17, we have calculated the cosmic ray values of σpp from the published
experimental values of σinel

p−air, using the results of Fig. 16. We note the systematic
underestimate of the cosmic ray points, roughly about the level of one standard de-

viation.
It is at this point important to recall Eq. (18) and consider the fact that the extrac-

tion of σinel
p−air from the measurement of Λm requires a determination of the parameter

k. The measured depth Xmax at which a shower reaches maximum development in

the atmosphere, which is the basis of the cross section measurement in Ref. 18), is a
combined measure of the depth of the first interaction, which is determined by the
inelastic cross section, and of the subsequent shower development, which has to be

corrected for. The position of Xmax also directly affects the rate of shower attenuation
with atmospheric depth which is the alternative procedure for extracting σinel

p−air.
The model dependent rate of shower development and its fluctuations are the
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origin of the deviation of k from unity in Eq. (18). Its values range from 1.5 for a

model where the inclusive cross section exhibits Feynman scaling, to 1.1 for models
with large scaling violations15). The comparison between data and experiment in
Fig. 17 is further confused by the fact that the AGASA19) and Fly’s Eye18) experiments
used different values of k in the analysis of their data, i.e., AGASA used k = 1.5 and

Fly’s Eye used k = 1.6.
We therefore decided to let k be a free parameter and make a global fit to the

accelerator and cosmic ray data, as mentioned above. This neglects the possibility

that k may show a weak energy dependence over the range measured. We find that
k = 1.349±0.045, where the error in k is the statistical error of the fit. By combining
the results of Fig. 15 (a) and Fig. 16, we can plot our prediction of σinel

p−air vs.
√

s. In
Fig. 18 we have rescaled the published high energy data for σinel

p−air (using the common
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results of Fig. 16 and the common value of k = 1.349, found from our global fit.

value of k = 1.349), and plotted the rescaled data against our prediction of σinel
p−air

vs.
√

s. Clearly, we have an excellent fit, with good agreement between AGASA and
Fly’s Eye. The plot of σpp vs

√
s, including the revised cosmic ray data is shown in

Fig. 19. Our result for k is interesting—it is close to the value of 1.2 obtained using the

SIBYLL simulation21) for inclusive particle production. This represents a consistency
check in the sense that our model for forward scattering amplitudes and SIBYLL share
the same underlying physics. The increase of the total cross section with energy to
a black disk of soft partons is the shadow of increased particle production which

is modeled by the production of (mini)-jets in QCD. The difference between the k
values of 1.20 and 1.349 could be understood because the experimental measurement
integrates showers in a relatively wide energy range, which tends to increase the value

of k.

4.3. Parameterization of σinel
p−air

A simple parameterization for the inelastic p-air cross section over the proton
laboratory energy region 1014 to 1020 ev is given by

σinel
p−air = σ0[1 + a0 ln(Elab/1000)], (21)

where σ0 = 297.20 mb, a0 = 0.04879 and Elab is the laboratory energy of the proton,
in GeV, and is shown in Fig. 20. This parameterization of our theory can be useful

in the calculation of neutrino fluxes needed in neutrino telescope experiments.

4.4. Predictions for the LHC

We predict at the LHC energy (14 TeV), that σtotal = 107.4 ± 1.5 mb, σelastic =

30.9 ± 0.5 mb, ρ = 0.112 ± 0.002, and B = 19.41 ± 0.15 Gev−2, where the quoted



Figure 20: A convenient parameterization of σinel
p−air, the inelastic p-air cross section, in mb vs. Elab,

the laboratory energy of the proton, in GeV. The dots are numerical calculations using our theory,
and the solid line is the parameterization given in the text.

errors are due to the statistical errors of the fitting parameters.

5. Conclusions

The overall agreement between the accelerator data and the cosmic ray data with
our QCD-inspired fit, as shown in Fig. 19, is striking. Thus, the accelerator and

cosmic ray data are readily reconcilable, if we use a (model independent) value of
k = 1.349 ± 0.045.
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