# A New Fit to Solar Neutrinos Using Extra Dimensions

David O. Caldwell

University of California Santa Barbara

Relevance of a new analysis of LSND data Likely  $4-\nu$  mass-mixing scheme (adding a  $\nu_s$ ) Support for the scheme from the r process Need for extra dimensions for solar  $\nu_e \rightarrow \nu_s$ Some implications of having  $\nu_s$  in extra dimensions

# New LSND Analysis

Likelihood based on light amplitudes and arrival times

Fit to position, energy, direction, track length, 7 Crad.

Formerly used input information separately

Improved position resolution = better accidental of rejection

Old R>30 vs. new R>10 (zep>e+n, np>>d)

Correlated & efficiency: from 23% to 40%

Accidental background drops from 0.6% to 0.23%.

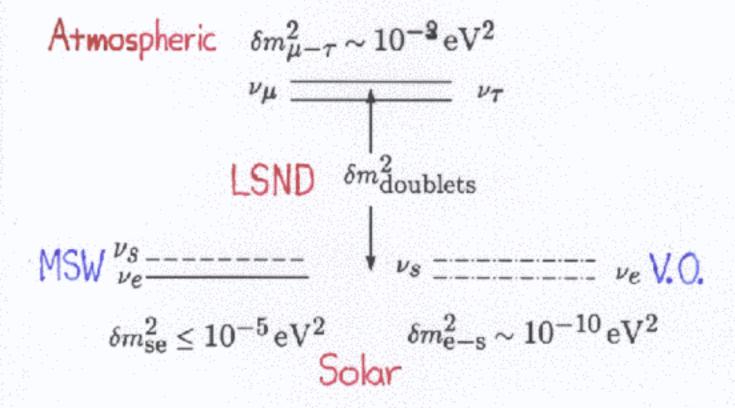
Results for R>10

86 beam-on events, 36.9 beam-off,  $16.9\nu$  background

Excess = 32.2 ± 9.4

Probability 36.9+16.9=53.8 fluctuates to 86 is < 1×10-4

#### Implications


LSND results require 4 neutrinos (i.e., one sterile  $\frac{1}{2}$ )  $\frac{1}{2}$   $\frac{1}{2}$  for the atmospheric  $\frac{1}{2}$  anomaly  $(\Delta m^2 - 10^9 eV^2)$   $\frac{1}{2}$  for the solar  $\frac{1}{2}$  deficit  $(\Delta m^2 < 10^{-5} eV^2)$   $\frac{1}{2}$  with  $0.2 \le \Delta m^2 \le 10 eV^2$  from LSND

Scheme suggested ~8 years ago, prior to LSND D.ac Moriond For solar, atmospheric, hot dark matter (1/4+14)

Given theoretical basis: D.O.C.+Mohapatra; Peltoniemi+Valle

4-2 Scheme Supported by Supernova Nucleosynthesis Problems with r-process heavy-element production Models give too few neutrons (need ~10% Fe" seed) Fatal a production inside r region (pn-a, un-ep, etc.) Solved by two neutrino level crossings D.O.C., Fuller, Qian Inner: 1/4, (maximally mixed) + 1/5 (near /4,7+0) Outer: 20-24 (LSND MSW density), not 24-76 Result in r region: 1/4 24, 1/4 27, 1/2 25, and no ve Despite needed huge if flux at smaller radius Te unaffected, so Tep > etn enriches r region Neutrino properties required At least one light sterile neutrino 14,74 maximally mixed (as atmospheric data shows) ve. 1/4 mixing > 10-4

Amen > leV2 (keeps level crossings in correct order)



# Relevance of the Solar Neutrino Deficit Measurements to test MSW or vacuum oscillations (V.Q.) Rates: GALLEX+SAGE (>0.23 MeV), CI(>0.81), Super-K(>5.5) Energy spectrum in Super-K (nothing fits well) Day-night (MSW only, but a $1\sigma$ effect) Seasonal (V.O. only, but slight or none) Nothing fits well for $v_e * v_u$ , and $v_e * v_s$ is worse MSW (small-Zonly) fair for rates, can't fit spectrum

V.O. fair for spectrum, can't fit rates

## Invoking Extra Dimensions

#### Sterile neutrinos

Prejudice against: hard to make light, mix with other  $\nu$ 's Models with large extra dimensions solve the problems For simplicity, take one large extra dimension of size R  $\nu_s$  is a bulk state with active  $\nu$ 's on a brane  $\nu_s$  has Kaluza-Klein (K-K) higher mass states  $(m_n \approx \frac{n}{R})$ 

# Required phenomenology

Zero mode of  $v_s$  split slightly from  $v_e$  to give V.O. Spacing of K-K states (gravity limits) give  $v_e$  MSW



## Model from R.N. Mohapatra

After EW symmetry breaking  $z_s$  is a Dirac  $\nu$  of  $\sim 10^{-5} \text{eV}$  Add 2 Higgs singlets to get  $\nu$  masses radiatively (2 loops) Dirac  $\nu_s$  splits giving Majorana  $\nu_e$ ,  $\nu_s$  (doubles K-K) and V.O. Radiative effects give Majorana mass to  $\nu_u$ ,  $\nu_s$  (atmos., LSND)

# Confronting the Data

Mixing:  $\cos \theta = 1/N$ , where  $N^2 = 1 + \pi^2 (m_o R)^2 + (\frac{m_n}{m_o})^2$ 

V.O. (n=0):  $m_0 R \ll I$ ,  $N^2 \approx 2$ ,  $\cos \theta \approx I \sqrt{2}$ ,  $\theta \approx \frac{\pi}{4}$  (maximal mixing)

MSW (n>1):  $N^2 \approx 1 + \left(\frac{n}{m_o R}\right)^2$ ,  $\cos \theta \approx \frac{m_o R}{n} \approx 10^{-2} / n$  (very small)

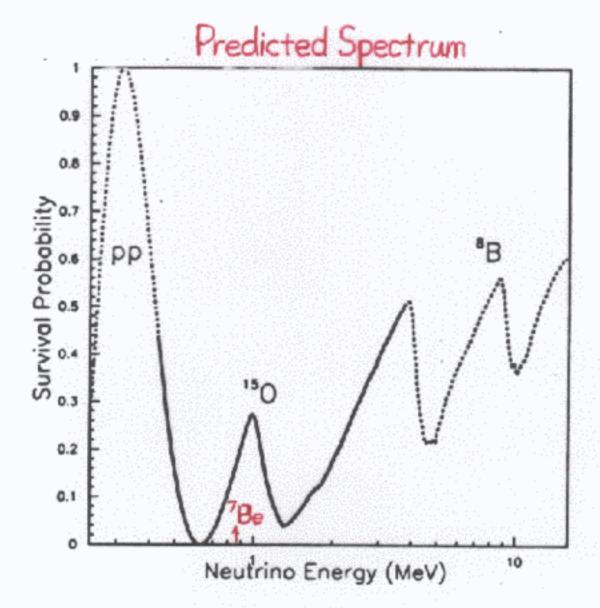
Fitting to 3 rates neglecting errors in fluxes (S.J. Yellin)

SAGE+GALLEX+GNO: 26 survival probability=0.579±0.039

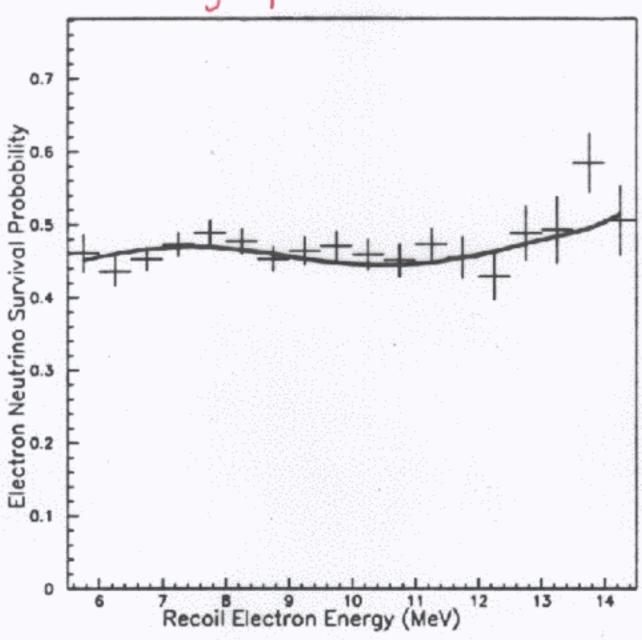
C1(Homestake): 0.332±0.030

Super-Kamiokande: 0.465±0.015

Results: 0.533, 0.386, 0.460


#### Some consequences

 $\Delta m_{v.o.}^2 = 0.53 \times 10^{-11} \text{eV}^2$ ,  $\sin^2 2\theta_{MSW_1} = 3.5 \times 10^{-4}$ ,  $m_o \approx m_{v.e} = 3 \times 10^{-5} \text{eV}$ 


All very small: no BB, little seasonal or day-night effects

Avoids supernova, BB nucleosynthesis bounds (1 K-K tower, lown,)

R=58 um, so gravity experiments can test it



## 1117-Day Super-Kamiokande Data



This not a fit to data!

# Implications of Bulk Sterile Neutrinos

# Cosmic rays beyond the G-Z-K cut-off

v with large of at high E would do, but see low-Eeffects

v→vs K-K states avoid this limit by density of states

Dark matter (Abazajian, Fuller, Patel.....)

K-K states from reheating after inflation

Single K-K tower based on a very small mass (10-5eV)

Not in thermal equilibrium—avoids nucleosynthesis limit

Solar parameters give  $\Omega_m$  0.5-1 (depends on reheat T)

Dark matter: little hot - 1/2 warm, -1/2 cold

#### Supernovae

Two-level-crossing r process still OK

Not such a limit on extra-D models as some claimed

Behavior of v's in core more complex

Reconversion behind the shock may aid blow-up

#### Conclusions

LSND's new analysis strengthens  $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$  positive result 4- $\nu$  scheme satisfies all  $\nu$ -oscillation, r-process input Large extra dimension needed for solar  $\nu_{e} \rightarrow \nu_{s}$  If so, many implications: dark matter, cosmic rays, supernoval SNO will soon show if this correct!